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Abstract. The Lennard-Jones interaction has been introduced into the Collins mixed lattice 
for two-dimensional ( 2 ~ )  liquids. By means of rigorous calculation of the total potential and 
the free area, the Gibbs functions for ZD liquids and solids have been derived. The melting 
line obtained from the phase transition equation agrees quite well with the results of recent 
computer simulation experiments. The reduced triple-point temperature T: of 0.438 
obtained agrees with the data measured in experiments on some inert-gas monolayers 
adsorbed on graphite as well as in computer simulation experiments. 

1. Introduction 

Melting in two dimensions (2D) has been a recent subject of interest. Theoretical interest 
in the problem of long-range crystalline order of lower-dimensional systems extends 
back many years. In the mid-1930s the lack of long-range translational order in 2~ 
solids was demonstrated [ l ,  21. However, as pointed out in [3], the weak logarithmic 
dependence on size allows a finite sample to be ordered over a finite range of 
temperatures. Thus, the theory does not exclude the solid phase of laboratory-sized 
monolayer films and is therefore in accord with experimental solid-like heat capacities 
[4]. A detailed theory of melting in 2~ has been put forward in [5-71. It was proposed 
that a solid-liquid transition in 2~ is mediated by a new phase called a ‘hexactic phase’ 
and the melting transition can be continuous. However, some experimental results and 
computer simulations still strongly indicate that both types of transition may occur in 
the same system [8]. The melting of Ar, Kr and Xe submonolayers was examined in 1982 
[9] by synchrotron x-ray diffraction and a set of reliable triple-point temperatures were 
obtained. The comparison of the three systems under the same experimental conditions 
is a significant advance in clarifying the complexities of substrate-influenced melting. The 
interpretation of the results of these investigations have led to controversies regarding the 
nature of the transition and the existence of a hexactic phase. Some workers suggest a 
possible hexactic phase at moderate densities, but a first-order transition at high densities 
[lo]. Both the experimental and the theoretical situations are, at present, quite mys- 
terious and challenging. 
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In this paper, we present a simple geometric theory of 2D melting based on the Collins 
model of liquids. We have adopted the Lennard-Jones (12,6) potential to represent the 
interactions between molecules. The Collins liquid model is a spatially random lattice 
in 2~ constructed by closely packing the plane with equilateral triangles and squares. We 
called this triangular-square lattice a mixed lattice. Although this theory explores the 
consequences of a first-order transition directly from the solid to the isotropic liquid, it 
cannot rule out the possibility of the dislocation-mediated melting in [5-71. Since the 
Lennard-Jones potential is a fair approximation to the interaction of inert-gas atoms, 
our results will give qualitative accounts of the phase diagrams for physisorbed inert 
gases without registry effects. The comparison with the experimental triple point and 
melting line will be conducive to better understanding of the geometric configurations 
of molecules in 2~ liquids and to further evaluation of the statistical geometric theory of 
melting. The mixed lattice model was studied in [ll, 121. but the discussions are all 
limited to the square well pair potential which works only between nearest neighbours; 
thus the results have only qualitative meaning and cannot be compared with real systems. 

Our model of liquids is explained in § 2. Since a detailed discussion of the Collins 
model in the study of the melting of 2D hard disc and square well systems was presented 
in [13], the present paper will only give a brief introduction. In § 3 the total potential 
energy of the mixed lattice is accurately evaluated by the numerical method in § 4. The 
solid-liquid transition and the melting line are obtained in § 5 ,  and § 6 is devoted to a 
summary and discussion. 

2. The Collins mixed lattice model 

The aim of the physics of liquids is to understand why particular phases are stable in 
particular ranges of temperature and density. The most severe difficulties in the theory 
of liquids arise because there is no obvious way of reducing the complex many-body 
problem posed by the motion of the molecules to a one-body problem, analogous to the 
phonon analysis of motions in crystals or to the virial series for dilute gases. Among the 
earliest theories of liquids were ‘cell’ or ‘free-volume’ theories which were based on the 
intuitive idea that a molecule in a liquid is essentially confined to a cell or cage formed 
by its neighbours. However, this cell theory [14] appears to describe solids and not 
liquids, since the theory uses essentially the Einstein model with full correction for 
anharmonicity. In an actual liquid, long-range order is absent in spite of the fact that its 
density is relatively high close to the corresponding crystal density. In contrast, it retains 
short-range order which is quite similar to that of the crystal. In 1964 a mixed lattice 
model of liquids was proposed [15]. This is a close-packed assembly of squares and 
triangles (figure 1). If we link the nearest neighbours by bonds, we obtain a planar 
network consisting of equilateral triangles, squares and pentagons. When all polygons 
are triangles, the lattice is a regular triangular lattice which corresponds to the crystalline 
state. When the configuration becomes more loosely packed and all polygons higher 
than pentagons are neglected, we obtain a triangular-square lattice which corresponds 
to the liquid state. The important parameter for describing the mixed lattice is the ratio 
of the number of triangles to the number of squares. When this ratio takes a certain 
intermediate value, the lattice becomes highly random without any long-range order but 
the short-range order is always preserved in the sense that all bonds have equal lengths. 
We regard such a state as a model for 2~ liquids. Therefore, this simple model can 
properly represent the most prominent character of liquid structure. 
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Figure 1. The Collins mixed lattice model of liquid. 

In the Collins mixed lattice, possible local configurations of triangles and squares 
around a vertex are shown in figure 2. There are four types of possible configuration: A,  
B, C and H. Let the numbers of these four types of lattice point be denoted by N, (i = A,  
B, C, H), then 

C N, = N = constant. (1) 

The partition function Z(N,, NB, N,, NH, T )  of the system can be written as 

( 2 )  
z = w i l - 2 ~ 1  exp (-- w) NiEo (i) [a t ( i>l~i  

I 

where E,&) is the potential energy of one molecule located at a lattice point of type i with 
the remaining N - 1 molecules of the system fixed at their lattice points, af(i) is the free 
area of type i, /1 = h/(2mkT)'/2 is the thermodynamic wavelength and W is the number 
of all different configurations formed under constant Ni. 

A H 

Figure 2. Local configurations of ZD liquids 

Apparently, when writing the partition function of the system, we adopt a method 
similar to that used for dealing with the mixed solutions [16]. Namely, we consider that 
the four different types of lattice point in the Collins mixed lattice correspond to the 
molecules of different components in the mixed solutions. Denote U. as the total 
potential of the system when every molecule is located at its lattice point; then 

U. = 4 2 NiEO(i) (3) 
I 
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where the factor B is in order to avoid double counting. Substitute (3) into ( 2 ) ;  then 

Here, we regard U,, in each of W different configurations as the same. This assumption 
is correct for the mixed lattice when the interactions are only between the nearest 
and the next-nearest neighbours. The Lennard-Jones potential can roughly satisfy this 
condition because the interactions decrease rapidly as the separation increases. In $ 3 ,  
we shall see that the number of those pairs of molecules which have distances shorter 
than V " b  (where b is the lattice constant) depend on the variables Ni only, in spite of 
the arrangement of the four types of lattice point. Hence the U. in each of W different 
configurations are approximately equal in fact. 

In particular, in order to pack closely the plane with triangles and squares the number 
W( N A ,  N B ,  Nc ,  N,, T )  of configurationsis related not only to the number of permutations 
N!/NA!NB!Nc!NH! ,  but also to the geometrical constraint conditions; so 

W = ( N !  /NA! NB ! Nc! NH!)F,( NA, NB 8 Nc, NH) . ( 5 )  
The constraint factor F, imposes a severe geometrical restriction over the whole system. 
It has been discussed in detail and the rigorous expression of F, has been derived in [ 131. 

3. Total potential of the 2~ Lennard-Jones system 

The geometrical constraint relation in the Collins mixed lattice makes it impossible for 
different types of lattice point to exchange without affecting other neighbours; so the 
total number W of configurations is always smaller than the number of ways in which N 
points can be arranged in a plane under constant Ni (i = A, B, C, H). This means that 
there is a certain correlation or order of the molecules in the system within a distance 
greater than the lattice constant b. Hence, for the Lennard-Jones potential, it is possible 
to calculate the total potential of the system with good accuracy. 

If we take account of only molecular pairwise interactions, the total potential of the 
system can be written as 

where Rk ( k  = 1, 2 ,  . . . , N )  is the position of each lattice point, Nj is the number of 
molecular pairs which have distance ri from each other, and 

Q(Y) = 4&[(0//T)12 - ( 0 / r ) 6 ]  (7) 
is the Lennard-Jones potential, in which - E  is the minimum of the potential and 0 is the 
distance between the two molecules at zero potential. 

As the Lennard-Jones interaction approaches zero as l/r6 at large distances, the 
contribution of those molecular pairs with a large distance to the total potentialcan 
be neglected, so that we can choose an appropriate truncated distance as rc = d 7 b  = 
2.6b in the calculation of the total potential U,,. In this case, Q(rc)/Q(b)  -- 0.5%. In the 
Collins mixed lattice, there are only seven t es of molecular pairs distance smaller than 
f l b .  They are r7 = b,  ~ b ,  d j b ,  +$-- (2  + 3)b, 2b, d /Sb  and d(4 + u 3 ) b .  All the 
seven types of molecular pair are included in the four types of local configuration: A, B, 
C, H. Hence, all the numbers Nj  ( j  = 1 , 2 ,  . . . ,7 )  are related only to NI (i = A, B, C,  



20 solid-liquid phase transition 1735 

4 
Figure 3. The molecular pairs in local 
configurations. Figure 4. Cell geometry of the Collins mixed lattice. 

H), but not to the way in which the four types of lattice point are arranged in the 
configurations. 

Take the molecular pair with distance r3 = d\/3b for example; local configurations of 
types A, B, C and H contain 2,1,0 and 6 such molecular pairs, respectively. Considering 
that such a molecular pair is counted twice in two local configurations (figure 3), the 
total number N 3  of these pairs in a configuration is 

N3 = h ( 2 N ~  + NB -I- 6NH) = &(2n,4 n B  f 6nH)N 

where ni = N i / N  (i = A, B, C, H). Using the same method, we can derive the numbers 
of the other six types of molecular pair; the results are shown in table 1. 

Table 1. The numbers of the molecular pairs in the Collins mixed lattice. 

i ‘i 

Substituting Ni and rj (f = 1,2,  . . . ,7 )  into (6) and considering nA + nB + n, + n H  = 
1, we find the total potential 

U. = &[kfI(a/r)l2 - k f l ( a / r ) 6 ] N  (8) 
where the coefficients kfl and kn are 

kfl = 12.0194 - 1.9470nA - 1.9484nB - 3.8914nc 

kfl  = 12.6319 - 1.7782nA - 1.7926nB - 3.3789nc. 

under the same truncated distance r, = d ? b ;  the corresponding coefficients are 

(9) 

For a 2D solid, let n A  = nB = nc = 0;  we can obtain the total potential of the system 

kSl = 12.0194 ks2 = 12.6319. (9’) 
As the structure of a 2D solid is a regular triangular lattice, let the truncated distance 
rc+ w; we can accurately calculate the total potential. As a result, the coefficients kSl 
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and ks2 are 12.0196 and 12.7460, respectively. However, when we calculate the melting 
transition, only the difference in the total potential between the solid and liquid states 
(A& = U,, - Uof) appears in the phase transition equation. Hence, if we choose the 
same truncated distance r, for both solid and liquid states, the errors will be partially 
counteracted, and the result will be more accurate. 

4. Calculation of the free areas 

Corresponding to the four types of lattice point in the Collins model, there are four types 
of free area; their general expression is 

where AVi(r) is the additional potential energy due to a central molecule which is at a 
distance rfrom the centre of the cell of type i .  Like the cell theory in [ 1 4 ] ,  the neighbours 
of the molecule are at the centres of their cells when AVi(r) is calculated. 

Suppose a molecule within a cell of type i has Mi nearest and next-nearest neighbours 
(for type A, M A  = 7 (figure 4)), the distance between the kth molecule of the Mi 
molecules and the central lattice point is g k  = Qkb (for type A, Q ,  = Q 3  = Q4 = Q ,  = 
Q6 = 1 and Q2 = Q7 = d3). If we set up a polar coordinate system by taking the 
direction from the central point to the first neighbouring molecule as the polar axis, then 
the polar angle of the connecting line from the central point to the kth neighbouring 
molecule is pk.7t. (for type A, p, = 0, p2 = b, p3 = t ,  p4 = Q, p5 = 6, p6 = 3 and p7 = a). 
When the molecule has coordinates ( 7 ,  q ) ,  the distance between it and the kth neigh- 
bouring molecule can be derived from the cosine law: 

Dk = [Y’ + E $  - 2 7 E k  cos(q - p k ? G ) ] 1 ’ 2 .  (11) 
Then the additional potential energy AV,(r) becomes 

The values of Mi, Qk and P k  corresponding to the four local configurations are shown in 
table 2. 

A, B, C, H). The integration 
region A in (10) is the cell of each 2D local configuration. The integrand decreases rapidly 

Substituting (12) into (lo),  we obtain the af(i) (i 

Table 2. Geometric parameters in calculation of free areas. 

A 7 1,.\/2, l , l ,  1, 1,.\/2 a,$,:,%, K , % ,  5 
B 7 1, l,a, 1,1, a, 1 O , $ , & , W ,  &,#,% 

H 6 1,1,1, 1,1,1 0, $ , I ,  1,4 ,8  
C 8 l , a , 1 , . \ / 2 , 1 , a , l , a  O,a,4,$,1,2,2,$ 
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with increasing distance r ;  so in actual calculations we choose a suitable value as the 
integral’s upper limit of r to simplify the calculation without significant errors. 

In general, AV,(r) in equation (10) is related to the direction g, of r .  It is impossible 
to calculate by an analytical method, and we are obliged to calculate it by a numerical 
method. 

In astudy of three-dimensional ( 3 ~ )  systems [16], an average potential wasintroduced 
to simplify similar integrals. Here we can also define an average potential for 2~ systems 
in the same way as 

AVi(r) = cli (23; lozn @(I. - bl) dq, - @(b) )  

where cli is the number of nearest neighbours of a lattice point of type i. Substituting the 
Lennard-Jones interaction into equation (13), we have 

AVi(r)/cIi = 4e[ (u /b ) l2L( r2 /b2 )  - (a /b)6M(rz /b2)]  (14) 

M ( x )  = (1 i- 4x + x*)/(1 - x)5 - 1. (16) 

r/b 

Figure 5. Average potential of 2~ and 3~ systems. 

These two expressions are obviously different from the two corresponding 
expressions for 3~ systems in their coefficients and degrees of the polynomials. In figure 
5 the AVi(r)/cli in 2D systems is compared with that in 3D systems. We can see that the 
increase in AVi(r)/cli in 2~ systems with increase in r is faster than that in 3~ systems. 

Obviously, in the average potential defined by equation (13), we only take account 
of the nearest-neighbour interactions. If we also take account of the next-nearest- 
neighbour interactions, the average potential is 
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where the c2i is the number of the next-nearest neighbours of a lattice point of type i. If 
we also take account of more interactions (up to r = v/7b) ,  it becomes 

2n 
AVi(r) = cli (&jo @'(lr - bl) drp - @'(b) )  (17') 

where 

@'(r)  = 4 ~ [ k f , ( a / b ) ' ~  - k ; , ( ~ / b ) ~ ]  

and 

k;, = kf1/12 k& = kf?/12. 

Although by using the AVi(r) defined by equation (13), (17) or (17') the approximate 
value of free area in equation (10) can be obtained more easily, yet how approximate it 
can be remains to be studied further. In this paper, we still carry out the numerical 
integration in a plane area, substituting equations (11) and (12) into equation (10). It is 
apparent that this calculation takes account of only the nearest- and next-nearest- 
neighbour interactions. 

5. Solid-liquid phase transition and melting line 

Where the total potential Uo, the free area af(i) (i = A, B, C, H) and the constraint factor 
F, obtained in [13] are substituted into equation (4), the partition function for a liquid is 

x exp { - [kfl l2 - kf2 (i)6]} x n [af(i)]"i 
I 

From thermodynamic relations the equation of state and the Gibbs function for a liquid 
can be obtained: 

P = - ( ~ F / C ~ A ) ~ , ~  = kT[(8/db)lnZ)] (8b/8A)N (19) 

G = F + P A = - k T l n Z + P A .  (20) 

T, N 

The relation between total area A and lattice constant b for a liquid can be derived 
directly from the geometrical relation [13] 

A = Ao(b/0)~{1 + [ (2V3 - 3)/6] ( n A  + n g  + 2nc)) (21) 
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whereAo = ( g/3/2)Na2 is the total area of the triangular lattice for close packing. When 
equations (18) and (21) and the thermodynamic wavelength are substituted into equation 
(20), and if nA + nB + nc + nH = 1, the complete expression for the Gibbs free energy 
for a liquid is 

For a solid, W = 1, and NA = NB = Nc = 0, NH = N; by substituting these into the 
above expressions, we can obtain the corresponding expressions for a solid. The Gibbs 
free energy is 

G,/NkT = ln(h2/2xmkT) + (&/kT) [k,,(a/b,)'2 - k,2(a/b,)6] - ln[af(H)] 

+ (PA,/NkT) (b,/a)2. (23) 
In equations (22) and (23) the bf and b, are the lattice constants for a liquid and a solid, 
respectively, and af(H) is just the free area of a regular triangular lattice. 

By using the stability conditions 

aGf/ani = 0 

aGj/ab, = 0 a2Gj/ab7 > 0 ( j  = f ,  s). 

a2Gf/an! > 0 (i = A, B, C )  
(24) 

the value of ni (i = A, B, C ,  H), and the lattice constants bf and b, can be determined for 
different pairs of (T, P )  after the minimisation of G. 

T' 

P' 

Figure 6. Melting line of Lennard-Jones system. 
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1 

p *  10-1 

10-2 

T *  

Figure 7. Reduce triple-point temperature of 2D Lennard-Jones system. 

At the solid-liquid phase transition, the Gibbs free energies for different phases must 
satisfy the phase transition equation 

Gf = G,. (25)  
On substitution of equations (23) and (24) into the phase transition equation (25 ) ,  

the melting line P = P(T)  can be solved. Let P = 0 at the melting line; the approximate 
value of triple-point temperature can be determined. 

The results of numerical calculation are shown in figures 6 and 7 and are listed in 
table 3. The results of the computer simulation experiments [17,18] for the 2~ Lennard- 
Jones system are also shown for comparison. In all these cases, T* = kT/& is the reduced 

Table 3. Numerical results of the melting of a 2D Lennard-Jones system. The values in 
parentheses are the results of the computer simulation experiments for a 2D Lennard-Jones 
system. 

T* P* = PAO/N& pT = p/po p: = p/po A(S/NK)  A(PA/NkT)  A(U/NkT)  

1.00 4.87 0.744 

0.70 2.10 0.710 

0.55 0.84 0.687 

0.45 0.09 0.667 

(0.741) 

(0.71 8) 

(0.694) 

(0.681) 

0.780 0.612 0.305 0.307 
(0.782) 
0.751 0.672 0.230 0.441 
(0.762) 
0.734 0.755 0.143 0.612 
(0.753) 
0.723 0.885 0.022 0.863 
(0.740) 

1.00 1.123 1.132 0.494 0.346 0.008 0.152 

0.70 1.150 1,154 0.492 0.347 0.008 0.153 

0.55 1.169 1.167 0.491 0.348 0.009 0.152 

0.45 1.186 1.176 0.492 0.348 0.009 0.151 

(1.131) 

(1.145) 

(1.152) 

(1.162) 
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temperature, p* = p / p o  is the reduced density and p o  = 2/d/3a2 is the density of the 
close-packed triangular lattice. 

From the data in table 3 and figure 6, we can see that the results of the theoretical 
calculation agree quite well with the computer simulation experiments. At  different 
reduced temperatures, the differences between our calculation and the simulations are 
less than 2.5% for bf, b,, pT and p r  at the melting transition. From figure 7 the reduced 
triple-point temperature TT obtained from the calculation is 0.438, which is quite close 
to the results of synchrotron x-ray diffraction experiments: T: = 0.41 for an Ar  mono- 
layer, T: = 0.44 for an Xe monolayer, and the result of the computer simulation 
experiments is T: = 0.415. From table 3, we can also see that the proportion of the local 
configuration of type C in a liquid in the melting region is very small. This is consistent 
with the results of calculations for 2~ hard disc and square well systems. Its physical 
meaning is that, when a liquid is in a melting region, the distribution of molecules must 
be close to the distribution of molecules in a solid; so the local configuration of type C, 
the comparatively loose-packed configuration, is relatively rare in a liquid of high 
density. 

6. Discussion 

The study of the solid-liquid phase transition by the geometric method is an important 
topic. The present work has proved again that the quantitative results obtained by this 
statistical geometric theory have a certain reliability. 

The heart of the matter is that the assumption of the geometric structure of a liquid 
in the Collins model is essentially quite close to the real picture of a liquid. First, the 
Collins model correctly reflects the feature of molecular arrangement in a liquid which 
has only short-range order but no long-range order. The short-range order is most 
distinct at r = b and gradually weakens on increase in r. For r > fib, the order dis- 
appears rapidly. Secondly, under constant N, (i A,B, c ,  H), the Collins model pro- 
duces many unequal configurations; so it reflects more naturally than other theories do 
the increase in entropy from solid state to liquid state. Thirdly, in the Collins mixed 
lattice, local configurations of types A and B appear in the greatest proportion (about 
84%). According to the Wigner-Seitz definition [19] of geometric neighbours, these two 
types of local configuration correspond to the degenerate state with five and seven 
neighbours. The computer simulation has verified that these local configurations, whose 
coordination number is not six, are present in 2D systems [20] and appear in large 
quantities when melting occurs [17]. Therefore we can say that the Collins model also 
expresses the feature that there are many local configurations with a ‘defect’ in the 
coordination number of a liquid. 

The results obtained are inconsistent with the dislocation-mediated theory of 2~ 
melting of in [5-71. Although the local configurations of types A and B can be regarded 
in a sense as a dislocation core, the existence of a single dislocation is inhibited in our 
model. The geometrical restriction is so severe in the Collins mixed lattice that a single 
dislocation necessarily destroys the packing condition and has a cost in energy and 
enthalpy. It might be interesting to note that such a correlation property of dislocations 
appears in the form of grain boundaries. Since grain boundaries are composed of 
dislocations, the crucial difference between a theory involving dislocations and one 
involving grain boundaries can be traced back to the fact that the potential between 
dislocations is not of a simple logarithmic form. Indeed, according to grain boundary 
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melting, it has been argued [21] that a first-order transition should be the rule. Although 
it is beyond the capacity of the present model calculation to determine whether melting 
in 2~ obeys a first-order or a continuous theory mediated by dislocations, the fact that 
the present results for the triple point and melting line are consistent with the results of the 
monolayer experiments and computer simulations suggests that the strong correlation 
effect leads to the first-order transition in ZD melting. Although very simple, this lattice 
mixed model contains within it the essential physics of some simple liquids. The use of 
the model in the ZD system, which consists of polyatomic molecules, is open to further 
discussion. 
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